Algebraic Relations among Periods and Logarithms of Rank 2 Drinfeld Modules
نویسنده
چکیده
For any rank 2 Drinfeld module ρ defined over an algebraic function field, we consider its period matrix Pρ, which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field Fq is odd and that ρ does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of Pρ over Fq(θ) is 4. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over Fq(θ).
منابع مشابه
Periods of Third Kind for Rank 2 Drinfeld Modules and Algebraic Independence of Logarithms
In analogy with the periods of abelian integrals of differentials of third kind for an elliptic curve defined over a number field, we introduce a notion of periods of third kind for a rank 2 Drinfeld Fq[t]-module ρ defined over an algebraic function field and derive explicit formulae for them. When ρ has complex multiplication by a separable extension, we prove the algebraic independence of ρlo...
متن کاملAlgebraic Independence of Periods and Logarithms of Drinfeld Modules
Let ρ be a Drinfeld A-module with generic characteristic defined over an algebraic function field. We prove that all of the algebraic relations among periods, quasiperiods, and logarithms of algebraic points on ρ are those coming from linear relations induced by endomorphisms of ρ.
متن کاملTranscendence in Positive Characteristic
1. Table of symbols 2 2. Transcendence for Drinfeld modules 2 2.1. Wade’s results 2 2.2. Drinfeld modules 3 2.3. The Weierstraß-Drinfeld correspondence 3 2.4. Carlitz 5 2.5. Yu’s work 6 3. t-Modules 7 3.1. Definitions 7 3.2. Yu’s sub-t-module theorem 8 3.3. Yu’s version of Baker’s theorem 8 3.4. Proof of Baker-Yu 8 3.5. Quasi-periodic functions 9 3.6. Derivatives and linear independence 12 3.7....
متن کاملOn Periods of the Third Kind for Rank 2 Drinfeld Modules
In analogy with the periods of abelian integrals of differentials of the third kind for an elliptic curve defined over a number field, we introduce a notion of periods of the third kind for a rank 2 Drinfeld Fq[t]-module ρ defined over an algebraic function field. In this paper we establish explicit formulae for these periods of the third kind for ρ. Combining with the main result in [Chang-Pap...
متن کاملFrobenius Difference Equations and Difference Ga- lois Groups
This is a survey article on recent progress concerning transcendence problems over function fields in positive characteristic. We are interested in some special values that occur in the following two ways. One is the special values of certain special transcendental functions, e.g., Carlitz ζ-values at positive integers, which are specialization of Goss’ two-variable ζ-function, arithmetic (resp...
متن کامل